主页
产品
解决方案
应用案例
新闻动态
购买渠道
下载与支持
关于我们
联系我们
主页
产品
新闻动态
购买渠道
下载与支持
关于我们
加入我们
联系我们
  • 中文|
  • Eng
  • 2D激光SLAM算法优劣对比

     

          为了便于大家在工作中选择合适的算法,本文将对ROS下几种开源的激光SLAM算法的特点及优劣进行比较。

          2D激光SLAM算法介绍

          Hector slam

          Hector slam对传感器的要求比较高,它主要是利用高斯牛顿方法来解决scan-matching的问题。

          Hector slam无需使用里程计,所以在不平坦区域实现建图的空中无人机及地面小车具有运用的可行性,利用已经获得的地图对激光束点阵进行优化,估计激光点在地图的表示,和占据网络的概率。获得激光点集映射到已有地图的刚体变换,为避免局部最小而非全局最优出现,地图使用多分辨率。

          需具备高更新频率且测量噪音小的激光扫描仪,所以,在制图过程中,robot的速度要控制在较低的情况下才会有比较理想的建图效果,这也是它没有回环的一个后遗症。另外在里程计数据比较精确的情况下无法有效利用里程计信息。

     

          Gmapping

          Gmapping是目前应用最为广泛的2D slam方法,主要是利用RBRF方法,所以需要了解粒子滤波的方法(利用统计特性描述物理表达式下的结果)。

          Gmapping可以实时构建室内地图,在构建小场景地图所需的计算量较小且精度较高。相比Hector SLAM对激光雷达频率要求低、鲁棒性高(Hector 在机器人快速转向时很容易发生错误匹配,建出的地图发生错位,原因主要是优化算法容易陷入局部最小值);而相比Cartographer在构建小场景地图时,Gmapping不需要太多的粒子并且没有回环检测因此计算量小于Cartographer而精度并没有差太多。

          随着场景增大所需的粒子增加,因为每个粒子都携带一幅地图,因此在构建大地图时所需内存和计算量都会增加。因此不适合构建大场景地图。并且没有回环检测,因此在回环闭合时可能会造成地图错位,虽然增加粒子数目可以使地图闭合但是以增加计算量和内存为代价。

          所以Gmapping不能像cartographer那样构建大的地图,虽然论文生成几万平米的地图,但实际我们使用中建的地图没有上万平米时就会发生错误。

     

          KartoSLAM

          KartoSLAM是基于图优化的方法,用高度优化和非迭代 cholesky矩阵进行稀疏系统解耦作为解,图优化方法利用图的均值表示地图,每个节点表示机器人轨迹的一个位置点和传感器测量数据集,箭头的指向的连接表示连续机器人位置点的运动,每个新节点加入,地图就会依据空间中的节点箭头的约束进行计算更新.

          KartoSLAM的ROS版本,其中采用的稀疏点调整(the Spare Pose Adjustment(SPA))与扫描匹配和闭环检测相关。landmark越多,内存需求越大,然而图优化方式相比其他方法在大环境下制图优势更大,在某些情况下KartoSLAM更有效,因为他仅包含点的图(robot pose),求得位置后再求map。

     

          LagoSLAM

          LagoSLAM是线性近似图优化,不需要初始假设,优化器的方法可以有三种选择 Tree-based netORK Optimizer(TORO), g2o,LAGO。

          基本的图优化slam的方法就是利用最小化非线性非凸代价函数,每次迭代,解决局部凸近似的初始问题来更新图配置,过程迭代一定次数直到局部最小代价函数达到, (假设起始点经过多次迭代使得局部代价函数最小)。

     

          CoreSLAM

          为了简单和容易理解最小化性能损失的一种slam算法,将算法简化为距离计算与地图更新的两个过程,第一步,每次扫描输入,基于简单的粒子滤波算法计算距离,粒子滤波的匹配器用于激光与地图的匹配,每个滤波器粒子代表机器人可能的位置和相应的概率权重,这些都依赖于之前的迭代计算. 选择好最好的假设分布,即低权重粒子消失,新粒子生成,在更新步骤,扫描得到的线加入地图中,当障碍出现时,围绕障碍点绘制调整点集,而非仅一个孤立点。

     

          实践结果比较

          通过在大小仿真环境、实际环境以及CPU消耗的情况下进行算法比较,发现CartoSLAM 与gampping占据优势更大。

          以上资料参考于csdn博客内容,如有不足欢迎指出!

    关键字:激光雷达,SLAM

    top